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ABSTRACT

3D shape measurement has a variety of applications in many areas, such as manufacturing, de-

sign, medicine and entertainment. There are many technologies that were successfully implemented

in the past decades to measure three dimensional information of an object. The measurement tech-

niques can be broadly classified into contact and non-contact measurement methods. One of the

most widely used contact method is Coordinate Measuring Machine (CMM) which dates back to

late 1950s. The method by far is one of the most accurate method as it can have sub-micrometer

accuracy. But it becomes difficult to use this technique for soft objects as the probe might deform

the surface of the object being measured. Also the scanning could be a time-consuming process.

In order to address the problems in contact methods, non-contact methods such as time of

flight (TOF), triangulation based laser scanner techniques, depth from defocus and stereo vision

were invented. The main limitation with the time of flight laser scanner is that it does not give

a high depth resolution. On the other hand, triangulation based laser scanning method scans the

object line by line which might be time consuming. The depth from defocus method obtains 3D

information of the object by relating depth to defocus blur analysis. However, it is difficult to

capture the 3D geometry of objects that does not have a rich texture. The stereo vision system

imitates human vision. It uses two cameras for capturing pictures of the object from different

angles. The 3D coordinate information is obtained using triangulation. The main limitation with

this technology is: when the object has a uniform texture, it becomes difficult to find corresponding

pairs between the two cameras. Therefore, the structured light system (SLS) was introduced to

address the above mentioned limitations.

SLS is an extension of stereo vision system with one of the cameras being replaced by a projector.

The pre-designed structured patterns are projected on to the object using a video projector. The

main advantage with this system is that it does not use the object’s texture for identifying the
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corresponding pairs. But the patterns have to be coded in a certain way so that the camera-projector

correspondence can be established. There are many codifications techniques such as pseudo-random

codification, binary and N-ary codification. Pseudo-random codification uses laser speckles or

structure-coded speckle patterns that vary in both the directions. However, the resolution is limited

because each coded structure occupies multiple pixels in order to be unique. On the other hand,

binary codifications projects a sequence of binary patterns. The main advantage with such a

codification is that it is robust to noise as only two intensity levels are used (0s and 255). However,

the resolution is limited because the width of the narrowest coding stripe should be more than

the pixel size. Moreover, it takes many images to encode a scene that occupies a large number

of pixels. To address this, N-ary codification makes use of multiple intensity levels between 0 and

255. Therefore the total number of coded patterns can be reduced. The main limitation is that

the intensity-ratio analysis may be subject to noise.

Digital Fringe Projection (DFP) system was developed to address the limitations of binary and

N-ary codifications. In DFP computer generated sinusoidal patterns are projected on to the object

and then the camera captures the distorted patterns from another angle. The main advantage of

this method is that it is robust to the noise, ambient light and reflectivity as phase information is

used instead of intensity. Albeit the merit of using phase, to achieve highly accurate 3D geometric

reconstruction, it is also of crucial importance to calibrate the camera-projector system. Unlike

the camera calibration, the projector calibration is difficult. This is mainly because the projector

cannot capture images like a camera. Early attempts were made to calibrate the camera-projector

system using a reference plane. The object geometry was reconstructed by comparing the phase

difference between the object and the reference plane. However, the chosen reference plane needs

to simultaneously possess a high planarity and a good optical property, which is typically difficult

to achieve. Also, such calibration may be inaccurate if non-telecentric lenses are used. Calibration

of the projector can also be done by treating it as the inverse of a camera. This method addressed

the limitations of reference plane based method, as the exact intrinsic and extrinsic parameters of

the imaging lenses are obtained. So a perfect reference plane is no longer required. The calibration
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method typically requires projecting orthogonal patterns on to the object. However, this method

of calibration can be used only for structured light system with video projector. Grating slits and

interferometers cannot be calibrated by this method as we cannot produce orthogonal patterns

with such systems.

In this research we have introduced a novel calibration method which uses patterns only in

a single direction. We have theoretically proved that there exists one degree-of-freedom of re-

dundancy in the conventional calibration methods, thus making it possible to use unidirectional

patterns instead of orthogonal fringe patterns. Experiments show that under a measurement range

of 200mm × 150mm × 120mm, our measurement results are comparable to the results obtained

using conventional calibration method. Evaluated by repeatedly measuring a sphere with 147.726

mm diameter, our measurement accuracy on average can be as high as 0.20 mm with a standard

deviation of 0.12 mm.



1

CHAPTER 1. INTRODUCTION

This chapter is a general introduction for the entire thesis. The motivation for this research

is discussed in section 1.1. The contemporary and past 3D shape measurement techniques are

discussed in section 1.2. The objective of the research is discussed in section 1.4. Finally, the

structure of the thesis is discussed in section 1.5.

1.1 Overview

The imaging technology has gained so much importance in the recent times and it is evident

from the extensive research that is happening in this field. This is mainly because of its potential

applications in many diverse fields. In today’s world the imaging technology is used in almost

all fields including high speed cameras accurately tracking the motion of a cricket ball; doctors

using an endoscopy machine to see the interior organs of humans; cameras that are installed in

hallways for surveillance purposes. So a 3D image is more desirable than 2D in the above mentioned

scenarios in order to make accurate decisions as the planar information is not sufficient. In order to

obtain an accurate 3D information of the scene the system needs to be calibrated. The dimensional

inaccuracies can be reduced with a precise calibration system.

3D imaging is widely used in many fields. Some example applications are elaborated as follows.

1.1.1 Medicine and Biology

Imaging techniques have been widely used in the area of medicine. The complicated surgeries

have become less risky because of the advancements in imaging technologies. Doctors are able to

locate the interior damage accurately with the help of advanced imaging techniques like endoscopy,

computed tomography (CT) scan and magnetic resonance imaging (MRI). Endoscopy uses a flex-

ible tube with a light source and camera which is inserted into the intestine to capture pictures.
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Certain surgical procedures like laparascopy is possible only because of the improvement in imaging

technology. Optical techniques coupled with machine learning is also used for diagnosing cancer

(Devi et al., 2016). Recently, research has also been conducted on 3D endoscopy imaging tech-

niques. One of the well known approach is to use a stereo vision system (Dhond and Aggarwal,

1989) to produce a 3D image. Apart from 3D endoscopy, imaging is also used to obtain 3D facial

expressions which will be extremely helpful for cosmetic surgeries (Mehta et al., 2008). Bhatia

et al. (Bhatia et al., 1994) has developed a structured light scanner using projectors and digital

cameras which gives a 360 degree surface scan of the human head. This result can be used for

assessing the change after a cosmetic surgery. Scientists have also been doing extensive research to

visualize the functioning of heart accurately. The reason is, doctors will be able to perform more

effective cardiac disease diagnosis if they can see the functioning of the cardiac system. Structured

light scanning has proved in a variety of situations that it can be a good option for scanning the

heart. Laughner et al. (Laughner et al., 2012) has developed an ultrafast structured light 3D

imaging system with a spatial resolution of 87 µm to analyze the dynamics of a live rabbit heart.

3D imaging technique along with non-rigid motion tracking algorithm is used to track the motion

of cardiac system. Apart from topological analysis, 3D imaging will be also extremely useful for

doctors to diagnose potential problems in heart valve. Iyengar et al. (Iyengar et al., 2001) has

developed an imaging system to track the motion of the valve leaflet. The imaging system involves

projecting of 150-200 laser light points over the leaflet surface and a stereo system with high res-

olution boroscopes to track the laser light points. All aforementioned technological advancements

have demonstrated the importance of 3D imaging in the field of medicine and biology.

1.1.2 Industrial applications

Manufacturing industries will benefit a lot from 3D imaging technologies especially in the pro-

duction and quality control departments. Many industries such as automotive and aerospace indus-

tries, will require high precision in the components being made. The conventional technique used

in most of the industries for 3D surface measurement is a coordinate measuring machine (CMM)
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(to be discussed in section 1.2.1). CMM is widely used because of its ability to reach accuracy

in sub-micrometer level. But its point by point contact nature takes a lot of time for a single

measurement. One more requirement for these industries is that they will have to maintain their

production volume. In such cases, the time spent on inspection should be less to maintain the

production rate. On the other hand, the inspection should also be accurate. With such need, the

structured light technology can be a potential solution for in-situ inspection given its combined

speed and accuracy advantage.

1.1.3 Entertainment

The applications of structured light technology is not only limited to manufacturing and medicine

industry. Entertainment industry also benefits a lot from the same. For instance, the first genera-

tion of Microsoft Kinect, uses structured light technology for constructing the 3D image (Villaro-

man et al., 2011). Many games use Kinect’s algorithm to decode the gestures made by humans.

The entertainment experience in video games becomes even more exciting when one can use their

body parts (using a 3D structured light sensor) for playing the game instead of a hardware device

controlling your motions.

1.2 Current practices

There are a variety of 3D measurement methods. They are mainly classified into two categories:

(i) contact method and, (ii) non-contact method. The strength and weaknesses of each method is

discussed as follows:

1.2.1 Contact method

Coordinate measuring machine is the one of the most widely used measurement technique for

contact based measurements (Pettersson, 2009). CMM is a device that senses the geometry of the

objects with the help of a movable probe. The probe is allowed to move in all the three axes (X,

Y and Z). Each axis has a sensor for monitoring the probe in that axis. When the probe comes
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in contact with a particular location on the sample being measured, then the machine will record

the coordinates from the three position sensors. The probe is generally spherical in shape, few

enhancements were made to its design by introducing two bar like members on to the sphere (May

and Gosselin, 1986). The robotic arm that contains the probe has 6 degrees of freedom (Bailey,

2010). CMM is widely used in manufacturing industries to ensure the dimension of the parts before

going into assembly. CMM has high dimensional measurement accuracies in sub-micrometer level.

There are few disadvantages in using CMM and they are as follows:

• CMMs are not easy to operate. Mostly manufacturing and production experts are those who

operate the machine with ease.

• The probe needs to make a physical contact on the surface of the object being measured, so

in the process of scanning the probe might damage the surface of the object.

• Though CMMs are very accurate, it takes a lot of time to complete one scanning process. So

this could be a bottleneck in industries where the production volume is very high.

1.2.2 Non-contact method

Some of the widely used non-contact measurement techniques are introduced as follows:

1.2.2.1 Laser based techniques

Laser scanning has been used extensively in 3D optical metrology. Following are some of the

measurement methods that has different 3D scanning mechanisms:

(1) Triangulation based 3D laser scanner

Triangulation based 3D laser scanning is a non-contact, non-destructive 3D measurement tech-

nique. It has a laser probe (emitter) and a detector (receiver) (Franca et al., 2005; Acosta et al.,

2006). The laser probe projects a dot or a line of laser light on the object (as represented in Fig. 1.1)

and the detector records the reflected laser light signal as it moves over the object. The emitter,

receiver and the laser dot or line form a triangle. Therefore, the 3D coordinates are produced via
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this triangulation relationship. The main advantage with this system is that it is capable of mea-

suring a large-scale object such as ships or aircraft wings. However, this method is time consuming

for real-time measurement since it needs to perform dot-by-dot or line-by-line scanning.

Object Laser source

Detector

Figure 1.1 A schematic diagram of triangulation based 3D laser scanner.

(2) Time of Flight laser scanner

Time of flight (TOF) laser scanner estimates the surface topography by calculating the time

taken for the laser light to reach the laser range detector after striking the object (Lichti and

Harvey, 2002). Figure 1.2 is the schematic diagram of a typical time of flight laser scanner. If the

time taken for the round trip is t, and the speed of light is c, then the depth is given by c · t/2. The

main advantage with time of flight is its simplicity in construction and compact design. However,

the spatial resolution is limited. Due to the extremely high speed of the light, it is difficult to achieve

a high depth resolution (e.g. a timing sensor with a resolution of 3.3 picoseconds is required to

resolve 1.00 mm in depth).
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Figure 1.2 A schematic diagram of time of flight laser scanner.

1.2.2.2 Depth from defocus

In this method the depth information of the object is estimated using the level of defocus in

different captures. A 3D image can be reconstructed with at least two 2D images captured at two

different focus levels (Subbarao and Surya, 1994; Chaudhuri and Rajagopalan, 2012). The object

to be scanned is placed on the surface table. Images are captured at different depths. So the points

at different locations along the optical axis will have varied amount of blurring. Quantifying the

blurring will give the depth information. The main advantage of this method is that the system

setup is very simple as only one camera is sufficient for acquiring a 3D image. Also, it can measure

steeply sloped surfaces. However, there are a few disadvantages too. If the object being captured

doesn’t have a rich texture information, then the blurring effect will not be significant and the

reconstructed 3D image might not be accurate. Also, it has limited vertical and lateral resolutions

(Schechner and Kiryati, 2000).
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1.2.2.3 Stereo Vision

Stereo vision system imitates the way in which a human sees the 3D world. A stereo vision

system has two cameras (similar to two human eyes as shown in Fig. 1.3) and they capture the same

scene from a different view points. The camera has an image plane onto which the 3D real world

objects are projected as a 2D image. The relationship between the real world 3D points and their

perspective projections on 2D camera image planes is called epipolar geometry. The principle of a

typical stereo vision system is illustrated in Fig. 1.4, where OL and OR are the centers of projection

of the two cameras, EL and ER are the epipolar points, and PL and PR are the projections of the

real world point P on the camera image planes. The projection line POL and POR are viewed as a

single point PL and PR on the left and right camera respectively. Given the projected point PL on

left camera image, by taking advantage of the epipolar geometry, the problem of correspondence

finding narrows down from 2D to 1D as the corresponding point captured by the right camera must

lie on the line ERPR. Once the correspondence pair is identified, 3D coordinates of a real world

point P can be calculated via triangulation.

Left eye

Right eye

P1

P2

Figure 1.3 Human vision system.
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P
P1

P2

P3

PL
PR

EL ER

OL OR

Left Camera Right Camera

Figure 1.4 Schematic diagram of a stereo vision system.

To perform triangulation, it is important to establish the imaging model of a camera. The

projection from a 3D world coordinate to a camera image coordinate is typically described by a

pinhole imaging model (Zhang, 2000):

s


u

v

1

 = A

[
R t

]


X

Y

Z

1


, (1.1)

where [X,Y, Z, 1]T represents the point in the homogeneous world coordinate system, [u, v, 1]T

denotes the point in the homogeneous image coordinate system with the principle point [u0, v0, 1]T ,

and A is the intrinsic matrix represented as

A =


fu α u0

0 fv v0

0 0 1

 . (1.2)

Here, fu and fv are the focal lengths along u and v axes, respectively. [R, t] is the extrinsic matrix

(rotation and translation matrix) that transforms the world coordinate to a camera lens coordinate,

and s is the scale factor. There are numerous calibration approaches developed to estimate the

extrinsic and intrinsic matrices (Duane, 1971a; Sobel, 1974a; Tsai, 1987a; Zhang, 2000; Lavest et al.,
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1998a; Albarelli et al., 2009a; Strobl and Hirzinger, 2011a; Huang et al., 2013c,a). As one can see,

the key to successful stereo 3D vision is to correctly establish the correspondence pair. However,

stereo vision technique has the problem of finding correspondence pairs in case of a uniform or

repetitive texture. An example demonstration of the problem in finding correspondence is clearly

depicted in Fig. 1.5. If the left camera captures the image of the checker board and if we try to

find the corresponding point (for the one highlighted with the circle) in the right camera’s image,

the checker board has a repetitive pattern so it is difficult to accurately locate the corresponding

point.

Figure 1.5 Sample object with repetitive texture.

1.2.2.4 Structured Light

The structured light technique is similar to stereo vision but one of the camera is replaced

by a projector. This method solves the correspondence problem in stereo vision technique by

incorporating an active illumination device. In this method, the projector projects preloaded

structured patterns on the object to actively provide features, so it does not need to rely on the

texture of the object.
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(a) (b)

Figure 1.6 Concept of structured light technique. (a) Schematic diagram explaining the
principle of structured light technique; (b) correspondence determination by
finding the intersection point between phase line and epipolar line.

Figure 1.6(a) illustrates the principle of the structured light technique. Here A represents a

projector pixel, D represents a camera pixel and the B is the object point being imaged. The

projector projects preloaded fringe patterns on the object. Since the object usually has curved

surfaces, the projected fringe patterns will get distorted by the surface which is then captured by

the camera. The determination of the correspondence between camera and projector points with

the constraints of epipolar geometry and phase lines is represented in Fig. 1.6(b). For an effective

correspondence establishment, many different structured coding strategies were developed over the

years. Following are some of the major coding strategies developed for structured light systems:

(1) Random or Pseudo codifications

In this method, patterns that vary in both the directions (u and v) are projected on to the

image. Payeur and Desjardins (Payeur and Desjardins, 2009) proposed a color coded random

patterns in the form of a square grid. The grid size was 3 × 3. Each uniquely coded grid makes

it easier for the camera to find the correspondence. This random pattern generation can also be

done by laser speckles (Huang et al., 2013e). Microsoft Kinect I uses this codification. The main
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advantage of this codification is that the entire scene can be coded by a single structured pattern.

However, it could be difficult to achieve a high spatial resolution as each unique pattern structure

occupies multiple projector pixels.

(2) Binary codifications

As shown in Fig. 1.6, only 1D correspondence is required. Therefore, attempts were also made

to create 1D-varying codifications. A straight forward approach is to perform binary codifications.

Binary codifications involves projecting a sequence of binary coded patterns (as shown in Fig. 1.7)

on to the object being measured. Postdamer and Altschuler (Posdamer and Altschuler, 1982)

created a system of encoded arrays in order to establish 1D correspondence. A sequence of black

and white patterns are projected on to the object by the projector. Patterns were created with

binary numbers 0 and 1 and there were only two intensity levels 0 and 255. Since only 0s and 1s

are used it is robust to noise. The correspondence can be found easily from the camera capture

as each pixel will have a unique codeword as shown in Fig. 1.8. However, this codification method

has a few disadvantages. It is difficult to have a high resolution because the width of the stripe

should be more than one pixel size. Besides, to encode a high pixel resolution, the total number of

patterns needed can be quite big, which sacrifices the speed of 3D imaging.

(a) (b) (c) (d)

Figure 1.7 Example of codified binary pattern sequence

(3) N-ary codifications

To address the limitations of binary codifications, N-ary codifications was developed to reduce

the total number of patterns by using multiple intensity levels between 0 and 255 as shown in

Fig. 1.9(a) - 1.9(b). The codeword is different for each pixel and it is determined from the intensity
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Figure 1.8 An example codifications of binary coded patterns.

ratio. The main advantage of this method is that the number of patterns required for a high

resolution capture is significantly less compared to binary codifications and this is because N-ary

codifications make use of multiple intensity levels. However, the disadvantage is that the intensity

ratio analysis could be sensitive to noise.

(a) (b)

Figure 1.9 Concept of N-ary codification. (a) An example N-ary pattern; (b) a cross-sec-
tion of (a) showing multiple gray levels.

1.3 Digital Fringe Projection (DFP)

The binary and N-ary codifications overcome the problem of correspondence pair detection by

creating a codeword for each pixel. However, their resolutions are limited since each codeword

occupies multiple pixels in width. But, if the binary and N-ary patterns are slightly blurred

then they form a sinusoidal pattern. With such sinusoidal patterns it is possible to reach pixel
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level resolution because each pixel differs from the neighboring pixel in terms of intensity. Digital

fringe projection (DFP) uses sinusoidal patterns for measurement. Computer generated sinusoidal

patterns are projected on to the object using a video projector. The sinusoidal patterns get distorted

when they fall on the object. The camera captures the distorted patterns from another viewing

angle. The DFP technique typically performs carrier phase base analysis since phase information

is more robust to noise, ambient light and reflectivity variations. To obtain the phase information,

phase shifting method is one of the most commonly used methods (Srinivasan et al., 1984; Huang

and Zhang, 2006). Following are the advantages of using phase shifting methods for retrieving

phase information:

• As phase shifting methods retrieve information pixel by pixel, it is possible to achieve high

spatial resolution.

• High capture speed can be obtained with phase shifting methods as they only require a

minimum of three frames for 3D reconstruction.

• It is robust to noise, ambient light and surface variations.

1.4 Objectives

The various codification techniques used for structured light system has been discussed in the

previous sections 1.2.2.4 and 1.3. The next step is to use these codified patterns to calibrate

the system. The key to accurate 3D shape measurement is the proper calibration of all the ele-

ments (projector and camera) of the structured light system. The camera calibration techniques

have been well established. On the other hand, the projector calibration is challenging because

it cannot capture images. Zhang and Huang (Zhang and Huang, 2006a) developed an enabling

technology for calibrating the structured light system, according to which a mirror image was cre-

ated for the projector by using the horizontal and vertical phase shifted patterns. However, using

the orthogonal patterns have few problems too. Grating slits and interferometers cannot produce

orthogonal patterns, so they cannot be calibrated by this method. In this research, we aim at
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developing a calibration method for the structured light system requiring only unidirectional pat-

terns. There exists one degree-of-freedom (DOF) of redundancy in the conventional Zhang and

Huang’s calibration method (Zhang and Huang, 2006a), which makes patterns in orthogonal direc-

tions over-constrained for system calibration. In this thesis, we will introduce the related theoretical

background and the other calibration methods used. Moreover, experimental results will be shown

to verify the performance.

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces the basic principles like fundamentals

of sinusoidal signal generation, that is used for 3D shape measurement. Chapter 3 illustrates our

calibration framework and Chapter 4 summarizes the whole thesis and discusses some directions

for future work.
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CHAPTER 2. BASICS OF STRUCTURED LIGHT SYSTEM

In this chapter fundamentals of sinusoidal signal generation that was used in the research will

be discussed. Also, the phase-shifting algorithm and other frameworks related to calibration will

be explained.

2.1 Fundamentals of sinusoidal signal generation

The idea of sinusoidal signal generation comes from the optical wavefront interference between

a reference and a test wavefront. This can be mathematically described (Zhang, 2016) as follows:

wr(x, y) = ar(x, y)ei[Φr(x,y)] (2.1)

wt(x, y) = ar(x, y)ei[Φt(x,y)] (2.2)

Φ(x, y) =
2πh(x, y)

λ
(2.3)

(2.4)

where wr is the reference wavefront and wt is the test wavefront. The equivalent wavefront

when they meet can be described as,

w(x, y) = wr(x, y) + wt(x, y) (2.5)

The intensity of the resultant wavefront (interfering fringe pattern) can be expressed as,

I(x, y, t) =| wr(x, y) + wt(x, y) |2, (2.6)

I(x, y, t) = I ′(x, y) + I ′′(x, y) cos[Φt(x, y)− Φr(x, y)], (2.7)

I ′(x, y) = a2
r(x, y) + a2

t (x, y), (2.8)

I ′′(x, y) = 2ar(x, y)at(x, y) (2.9)
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where I ′(x, y) is the average intensity and I ′′(x, y) is the intensity modulation. The phase difference

can be expressed as,

Φ(x, y) = Φt(x, y)− Φr(x, y) (2.10)

Thus the fundamental equation of fringe-analysis can be expressed as,

I(x, y) = I ′(x, y)) + I ′′(x, y) cos[Φ(x, y)] (2.11)

There are three unknowns in Eq. (2.15) (I ′(x, y), I ′′(x, y),Φ(x, y)), so at least three different phase-

shifted images are required for extracting the phase Φ(x, y).

2.1.1 Three-step phase shifting

Many phase shifting algorithms have been developed over the decades. Among them, the three-

step phase shifting algorithm requires the minimum number of fringe patterns for extracting the

phase. A three-step phase shifting algorithm with equal phase shifts (as illustrated in Fig. 2.1(a)-

2.1(c)) is mathematically defined as,

I1(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)− 2π/3], (2.12)

I2(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)], (2.13)

I3(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y) + 2π/3], (2.14)

where I ′(x, y) is the average intensity, I ′′(x, y) represents the intensity modulation, and φ(x, y)

is the phase (as shown in Fig. 2.1(d)) to be solved for. Simultaneously solving the above three

equations will lead to,

φ(x, y) = tan−1

[ √
3(I1 − I3)

2I2 − I1 − I3

]
, (2.15)

An arctangent function is used so that the phase value obtained from Eq. (2.15) will range from

−π to π with a 2π modulus. Spatial or temporal phase unwrapping algorithms could be used to

unwrap the phase to obtain a continuous phase map. The unwrapping process essentially locates
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the 2π discontinuities and removes the 2π jumps by adding or subtracting k(x, y) multiples of 2π.

Φ(x, y) = φ(x, y) + k(x, y)× 2π. (2.16)

Figure 2.1(e) shows the unwrapped phase map and Fig. 2.1(f) shows the reconstructed 3D

geometry.

(a) (b) (c) (d) (e) (f)

Figure 2.1 An example procedure for the DFP technique. (a) - (c) Three-step phase
shifted patterns; (d) wrapped phase; (e) unwrapped phase; (f) 3D reconstructed
geometry.

2.1.2 N-Step phase shifting

If more number of fringe patterns are used then the phase can be retrieved by a least square

manner. In a N-step phase shifting algorithm, the intensity of the k − th image with a phase shift

of δk can be expressed as (Zhang, 2016):

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos[Φ(x, y) + δk], (2.17)

δk =
2kπ

N
(2.18)

The phase after solving the over-constrained N equations by least squares method will be,

Φ(x, y) = tan−1

[∑N
k=1 Ik sin(2kπ/N)∑N
k=1 Ik cos(2kπ/N)

]
(2.19)

The phase shifting algorithms can extract the phase from the captured fringe images. However,

calibration is essential to convert the phase map into 3D geometry. Calibration of the structured

light system using orthogonal patterns is explained in section 2.2.
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2.2 Calibration using orthogonal patterns

In this section, the well-established popular calibration method proposed by Zhang and Huang

(Zhang and Huang, 2006b) will be discussed. In order to perform 3D reconstruction using structured

light system, a model should be established for the camera-projector system. Camera and projector

share the same optics - pinhole model. The projection for a pin hole model can be defined as,

s


u

v

1

 = A[R|t]



xw

yw

zw

1


(2.20)

where,

s - scaling factor.

A - Intrinsic matrix.

[R|t] - Extrinsic parameters.

(xw,yw,zw) - represent the world coordinate system . The extrinsic matrix is given by,

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (2.21)

t =


t1

t2

t3

 . (2.22)

The extrinsic parameters transform the points from 3D world coordinate to lens coordinate, they

are then transformed to the camera image plane using the intrinsic matrix. The intrinsic matrix is

given by,

A =


fu γ uo

0 fv vo

0 0 1

 (2.23)
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where fu and fv represent the effective focal length along the u and v axes, γ represents the skewness

of the two axes and (u0, v0) represents the principal point. The calibration involves the estimation

of the intrinsic and extrinsic parameters to establish a geometric relationship from known points.

The camera and projector can be modeled as a pinhole described in Eq. (2.20).

sc


uc

vc

1

 = Ac[Rc|tc]



xw

yw

zw

1


(2.24)

sp


up

vp

1

 = Ap[Rp|tp]



xw

yw

zw

1


(2.25)

The calibration of SLS system involves both the calibration of projector and camera. The camera

calibration has been well studied in the past. Initially 3D targets were used for calibration ( Duane

(1971b)), later a flexible calibration method using 2D targets was developed by Zhang ( Zhang

(2000)). The camera calibration involves capturing images of the target in different arbitrary poses

and then transforming them from the world coordinate to camera coordinate system, but this

is not sufficient for a structured light system as the projector also needs to be calibrated. The

calibration of the projector is difficult because it does not capture images like the camera. In

order to create target images for the projector, a one-to-one mapping has to be established between

the camera and projector pixels. The phase value of the codified patterns is used for establishing

a relationship between the camera and projector pixels. The phase shifting techniques provide

highly accurate phase information. N-step phase shifting (section 2.1.2) is preferred because

it has good measurement accuracy. The absolute phase (Eq. 2.26) is obtained by removing the

discontinuities using a temporal unwrapping algorithm (which determines the integer k(x, y) times

of 2π at discontinuous locations).
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Φ(x, y) = φ(x, y) + k(x, y)× 2π. (2.26)

The mapping between the camera and projector pixels can be established using the phase obtained

from Eq. 2.26. Consider a pixel (green color in the vertical patterns as shown in Fig. 2.2) in the

camera image plane, it also has a corresponding position in the projector’s image plane. The pixel’s

position will change when the patterns move in the horizontal direction, whereas its position will

not change when the patterns move in the vertical direction, so each camera pixel corresponds to

a line in the projector plane. The shift in the horizontal direction can be uniquely identified by

using a set of coded patterns. In this way, the one to many function relating a camera pixel to its

corresponding vertical line on the projector plane is expressed as,

up = fh(uc, vc) (2.27)

where fh represents one to many correspondence function of the point in the camera image plane

(uc, vc) for the pattern coded in the projector. From the Eq. (2.27), the camera pixel’s (uc, vc)

corresponding vertical line on the projector up can be estimated. Similarly for patterns oriented in

the horizontal direction, the one to many function relating the camera pixel to its corresponding

horizontal line on the projector vp can be expressed as,

vp = fv(uc, vc) (2.28)

Using the Eq. (2.27), (2.28), the corresponding point (up, vp) (on the projector plane) for any

camera pixel (uc, vc) can be identified.

3D reconstruction is done by solving the camera and projector’s projection matrix (Eq. (2.24)

and (2.25)). There are 7 unknowns (xw,yw,zw,sc,sp,up,vp) but there are only 6 equations. The

additional equation is obtained from horizontal or vertical mapping (Eq. (2.27) and (2.28)).
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CCD images DMD images DMD plane

Figure 2.2 Establishment of a one to one mapping between projector and camera pixel
using orthogonal patterns.

2.3 Summary

This chapter introduced the basic principles of sinusoidal signal generation. Then the various

phase shifting methods used for 3D reconstruction were introduced. Following that, a calibration

method using orthogonal patterns was discussed. The next chapter will introduce the proposed

calibration method using unidirectional fringe patterns.
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CHAPTER 3. CALIBRATION OF STRUCTURED LIGHT SYSTEM

USING UNIDIRECTIONAL FRINGE PATTERNS

This chapter will discuss in detail about our calibration framework using unidirectional patterns.

This chapter was originally published in Optics and Lasers in Engineering (Suresh et al., 2018).

3.1 Introduction

Optical means of three-dimensional (3D) surface measurement has been of great importance

in a variety of applications ranging from industrial inspection, robotics, and other applications.

Among all optical 3D surface measurement techniques, the structured light technology has been

increasingly studied owing to its merits of flexible system setup, high-speed and high-resolution

measurements Geng (2011); Gorthi and Rastogi (2010). The measurement accuracy of structured

light technology is largely determined by whether one could achieve highly accurate system cali-

bration, which requires accurately calibrating both the image acquisition device (e.g. camera) and

the active illumination device (e.g. projector).

The calibration of a camera has been well studied over the past several decades. Initial cali-

bration techniques started from developing techniques with precisely manufactured 3D calibration

targets Duane (1971b); Sobel (1974b). Then, Tsai Tsai (1987b) reduced the calibration target to

two-dimensional (2D) ones with out-of-plane rigid shift employed to provide depth information.

Later, as a milestone in camera calibration, Zhang Zhang (2000) has enabled calibration with 2D

targets that can be flexibly arranged with arbitrary orientations. Following Zhang’s method, re-

searchers developed advanced technologies that allow the usage of imperfect Lavest et al. (1998b);

Albarelli et al. (2009b); Strobl and Hirzinger (2011b); Huang et al. (2013d) or active targets Schmalz

et al. (2011); Huang et al. (2013b); Pak (2016). Some recent advances even extended such technol-

ogy to out-of-focus camera calibration Bell et al. (2016).
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For a structured light system, the projector should also be calibrated to realize absolute 3D

reconstruction. Yet, such task is comparatively more complicated since unlike a camera, the pro-

jector cannot capture images by itself. Methods that extract the exact system parameters (e.g.

positions, orientations) of the camera and projector Hu et al. (2003); Mao et al. (2007); Zappa

and Busca (2009) provide a solution, yet such methods typically require a time-consuming calibra-

tion process. Because of the level of complexity of projector calibration, the reference-plane-based

calibration Wen et al. (2010); Xiao et al. (2012); Villa et al. (2012); Xu and Zhang (2012) is still

a prevailing technology in the field of optics. Such methods have the merit of a easy-to-compute

phase-to-depth conversion. However, this kind of technology requires the reference plane to have a

good optical property and surface flatness, and the accuracy of calibration could be affected if the

imaging lens is non-telecentric. To address the limitations of a simple reference-plane-based cali-

bration, optimization techniques (e.g. polynomial fitting) Guo et al. (2006); Du and Wang (2007);

Merner et al. (2013); Huang et al. (2010); Vo et al. (2012) were used to decode depth information

from projector patterns’ codifications (e.g. phase value).

Apart from the aforementioned technologies, a different set of technologies were developed which

were originated from the concept of treating the projector as an inverse camera Legarda-Sáenz et al.

(2004). Zhang and Huang Zhang and Huang (2006a) developed the enabling technology which

allows the projector to “capture” images like a camera. The technology essentially maps a camera

point to a projector point using absolute phase, in which both horizontal and vertical patterns are

required to locate both u and v in 2D projector pixel coordinate. With such mapping scheme, the

target images for the projector can also be created and thus the projector can be calibrated using

similar strategies as used in camera calibration. Following Zhang and Huang’s work, there were

a series of different technologies to improve the accuracy including linear interpolation Li et al.

(2008), bundle adjustment Yin et al. (2012), residual error compensation Han et al. (2013), or

enhanced feature detection Chen et al. (2016). Further innovations have extended the calibration

to a system with an out-of-focus projector Li et al. (2014) and to a large-range measurement

system An et al. (2016). Such type of methods successfully addressed the long existing puzzle
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for projector calibration. However, a crucial limitation of this technology is its requirement of

patterns in orthogonal directions. This technology has been proven very efficient for a structured

light system with digital fringe projection. Since a video projector is programmable by the user,

one can easily generate patterns in orthogonal directions. Yet for other types of systems with

different fringe generation schemes (e.g. grating diffractions, interference, etc.), it is challenging to

produce patterns in orthogonal directions, making such types of calibration methods difficult to be

implemented.

In this research, we introduce a novel calibration method for the structured light system re-

quiring only unidirectional patterns. We mathematically proved that for 3D reconstruction, not all

parameters in the projector’s projection matrix are required to be known. Therefore, there exists

one degree-of-freedom (DOF) of redundancy in the conventional Zhang and Huang’s calibration

method Zhang and Huang (2006a), which makes patterns in orthogonal directions over-constrained

for system calibration. Our method takes one DOF away from projector calibration with an in-

novated least-square estimation method, where patterns with only one direction are sufficient to

support calibration and 3D coordinate computation. Experiments demonstrate that our proposed

calibration framework can achieve 3D shape measurement results comparable to the conventional

Zhang and Huang’s calibration method. Particularly, we achieved an average accuracy of 0.20 mm

with a standard deviation of 0.12 mm evaluated by repeatedly measuring a spherical object with

d = 147.726 mm.

Section 3.2 introduces the related theoretical background as well as our proposed least-square

projector partial calibration method. Section 3.3 will demonstrate the experimental results to show

the success of our method. Section 3.4 will summarize the contributions of this research.

3.2 Principles

In this section, we first introduce the related theoretical foundations such as the basics of

pinhole imaging model, phase shifting technique and camera calibration. Then, we will introduce
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our proposed unidirectional projector’s least-square partial calibration method and the associated

computation of 3D reconstruction.

3.2.1 Pinhole imaging model

In a structured light system, both the camera and fringe projector respect a well-known pinhole

imaging model as shown in Fig. 3.1. The associated mathematical formulation is described in

Eq. (3.1)

co0

cf
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wx
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wz ),,( www zyx
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(u, v)

(u0, v0)

u
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Figure 3.1 Pinhole imaging model. The picture is reprinted from Li et al. (2014)
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
. (3.1)

In this model, s denotes the scaling factor. rij and ti are respectively the rotation and transla-

tion parameters which transform a point (xw, yw, zw) in the world coordinate system to a point

(xc, yc, zc) in the camera lens coordinate system. fu, fv, γ, (u0, v0) are all intrinsic parameters of

the imaging lens, where fu, fv are the effective focal lengths along u and v directions, γ is the
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skew factor of u and v axes, and (u0, v0) is the principal point on 2D pixel coordinate. To further

simplify the model, one can perform matrix multiplication to obtain a combined projection matrix

M .

M =


fu γ u0

0 fv v0

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 , (3.2)

=


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 , (3.3)

The simplified model for the camera and the projector can be expressed using the following

equations, where superscript c and p denote the camera and the projector, respectively.

sc


uc

vc

1

 =


mc

11 mc
12 mc

13 mc
14

mc
21 mc

22 mc
23 mc

24

mc
31 mc

32 mc
33 mc

34





xw

yw

zw

1


, (3.4)

sp


up

vp

1

 =


mp

11 mp
12 mp

13 mp
14

mp
21 mp

22 mp
23 mp

24

mp
31 mp

32 mp
33 mp

34





xw

yw

zw

1


, (3.5)

3.2.2 Camera calibration and target 3D estimation

The camera calibration has been well established during the past several decades. In this

research, we adopted the well-known Zhang’s calibration method Zhang (2000) and the camera

calibration software toolbox provided by OpenCV. The layout of our calibration target is shown in

Fig. 3.2(a), on which the circle centers serve as feature points. Essentially, the camera calibration

is composed of two parts: intrinsic and extrinsic calibrations.
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The camera intrinsic calibration basically estimates the intrinsic parameters (fu, fv, γ, u0, v0).

We use the camera to take images of different target poses (an example is shown in Fig. 3.2(b)).

On each captured target pose, we extract the feature points (e.g. circle centers) for iterative

optimization of intrinsic parameters’ estimation provided by OpenCV camera calibration toolbox.

After intrinsic calibration, we obtained the intrinsic matrix of the camera as
f cu γc uc0

0 f cv vc0

0 0 1

 =


2081.481 0 602.996

0 2087.706 533.027

0 0 1

 . (3.6)

In this research, we coincide the world coordinate with the camera lens coordinate (i.e. xc = xw,

yc = yw, zc = zw): 
rc11 rc12 rc13 tc1

rc21 rc22 rc23 tc2

rc31 rc32 rc33 tc3

 =


1 0 0 0

0 1 0 0

0 0 1 0

 . (3.7)

Then, after matrix multiplication, the final projection matrix is obtained by
mc

11 mc
12 mc

13 mc
14

mc
21 mc

22 mc
23 mc

24

mc
31 mc

32 mc
33 mc

34

 =


2081.481 0 602.996 0

0 2087.706 533.027 0

0 0 1 0

 . (3.8)

The camera extrinsic calibration basically estimates the rotation rtgij and translation ttgi param-

eters from the planar target coordinate (xtg, ytg, 0) to the camera lens coordinate (xc, yc, zc). The

definition of the planar target coordinate (xtg, ytg, 0) is shown in Fig. 3.2(a), where the bottom left

circle center serves as the principal point. Given that we have already aligned the world coordinate

with the camera coordinate, the rotation rtgij and translation ttgi parameters will simply transform

the planar target points (xtg, ytg, 0) into 3D target points (xwtg, ywtg, zwtg) under world coordinate

system: 
xwtg

ywtg

zwtg

 =


rtg11 rtg12 rtg13 ttg1

rtg21 rtg22 rtg23 ttg2

rtg31 rtg32 rtg33 ttg3





xtg

ytg

0

1


(3.9)
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The extracted 3D target coordinates are shown in Fig. 3.2(c). Both intrinsic and extrinsic calibra-

tion are carried out using OpenCV function cv::calibrateCamera.

xtg

ytg

otg

(a) (b)

-50

0

-150

50

100

Y
 (

m
m

)

-50
50

Z (mm)
800750700

X (mm)

(c)

Figure 3.2 Camera calibration and target 3D estimation. (a) The layout of the calibra-
tion target and the definition of target coordinate; (b) the camera image with
extracted circle centers; (c) the estimated 3D target orientations.

3.2.3 Least-square phase shifting technique

As aforementioned, it is not easy to create target images for the projector simply because the

projector cannot capture images. However, the phase value obtained from pattern codifications

can provide extra information to establish the relationship between camera points and projector

points. Within different fringe projection techniques, the phase shifting technique Malacara (2007)

provides high quality phase extraction with a set of phase shifted fringe images. Some existing

techniques include three-step, four-step, least squares and so forth. For a least-square technique

with N -steps phase shifting, the i-th fringe image Ii(x, y) can be expressed as

Ii(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2iπ/N), (3.10)

where I ′(x, y) represents ambient light or average intensity, I ′′(x, y) denotes the modulation of

intensity, and φ is the phase to be extracted. Typically, the more steps (i.g. the bigger N) are

used, the better phase quality is going to be obtained. To compute for phase φ, one can use the

least-square method to solve for the over-constrained simultaneous equations given that N ≥ 3:

φ(x, y) = − tan−1

[∑N
i=1 I

i sin(2iπ/N)∑N
i=1 I

i cos(2iπ/N)

]
. (3.11)
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Since the computed phase map is in the form of an arctangent function, its value ranges from

−π to π with 2π discontinuities. To obtain absolute phase map without 2π discontinuities, a

temporal phase unwrapping method is typically required which determines the integer number

k(x, y) multiples of 2π to be added on the discontinuous points.

Φ(x, y) = φ(x, y) + k(x, y)× 2π. (3.12)

In this research, we adopted a gray intensity coding method Sansoni et al. (1999) for absolute phase

retrieval.

3.2.4 Unidirectional least-square projector partial calibration

Once the absolute phase Φ is obtained, assume that Φ varies along vp direction and starts from

0, one can calculate its corresponding pixel line vp on the projector image sensor

vp = Φ× T/2π. (3.13)

Here, T is the number of pixels per period of the narrowest fringe patterns used. T/2π is simply

a scaling factor that converts phase radians into projector pixels. An intuitive visualization of this

camera pixel to projector line mapping is shown in Fig. 3.3, in which one can clearly visualize that

for any picked camera pixel, its absolute phase value Φ corresponds to a unique pixel line vp on

projector image sensor.

CCD images DMD planeAbsolute phase 

(projector)

Absolute phase 

(camera)

Φ 

vp

Figure 3.3 Mapping a camera pixel to a projector pixel line using absolute phase. For each
picked camera pixel, its computed absolute phase corresponds to a unique line
on projector image plane.
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In Zhang and Huang’s method, both horizontal and vertical absolute phases are required so

that a unique mapping point (up, vp) on the projector image sensor is obtained for each target

feature point. After mapping each feature point for each target orientation, the same camera

calibration procedure is applied to projector calibration, which results in a complete projection

matrix being solved for the projector. However, in 3D reconstruction, not all three rows of the

projector’s projection matrix are required to be known. For instance, by simultaneously solving

Eq. (3.4) - Eq. (3.5), a typical 3D reconstruction can be calculated as[
xw yw zw

]T
= A−1b, (3.14)

where

A =


mc

11 − ucmc
31 mc

12 − ucmc
32 mc

13 − ucmc
33

mc
21 − vcmc

31 mc
22 − vcmc

32 mc
23 − vcmc

33

mp
21 − vpm

p
31 mp

22 − vpm
p
32 mp

23 − vpm
p
33

 (3.15)

b =

[
ucmc

34 −mc
14 ucmc

34 −mc
24 vpmp

34 −m
p
24

]T
(3.16)

As one may notice, if the patterns varying along vp are used, we do not need to know the first row

(mp
1js) in the projector’s projection matrix. This means that there exists one DOF of redundancy

in calibration, which provides us possibilities for further simplification.

In reality, from Eq. (3.5), we can obtain another equation of vp as follows

vp =
spvp

sp
=
mp

21x
w +mp

22y
w +mp

23z
w +mp

24

mp
31x

w +mp
32y

w +mp
33z

w +mp
34

. (3.17)

Previously, from camera extrinsic calibration, we have already obtained the 3D coordinates

(xwtg, ywtg, zwtg) for each calibration target point under world coordinate using Eq. (3.9) (see

Fig. 3.2(c)). Given that we also obtained vp for each target point from absolute phase using

Eq. (3.13), if we re-arrange Eq. (3.17) and plug in xwtg, ywtg and zwtg into the equation, we obtain

mp
31

mp
24

(vpxwtg) +
mp

32

mp
24

(vpywtg) +
mp

33

mp
24

(vpzwtg) +
mp

34

mp
24

(vp)

−m
p
21

mp
24

(xwtg)− mp
22

mp
24

(ywtg)− mp
23

mp
24

(zwtg) = 1.

(3.18)
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After linearizing the equation above, we can reformulate it as

Xm = I, (3.19)

where

X =



vp1x
wtg
1 vp1y

wtg
1 vp1z

wtg
1 vp1 −xwtg

1 −ywtg
1 −zwtg

1

vp2x
wtg
2 vp2y

wtg
2 vp2z

wtg
2 vp2 −xwtg

2 −ywtg
2 −zwtg

2

. . . . . . .

. . . . . . .

. . . . . . .

vpnx
wtg
n vpny

wtg
n vpnz

wtg
n vpn −xwtg

n −ywtg
n −zwtg

n


, (3.20)

m =

[
mp

31

mp
24

mp
32

mp
24

mp
33

mp
24

mp
34

mp
24

mp
21

mp
24

mp
22

mp
24

mp
23

mp
24

]T
, (3.21)

I =

[
1 1 1 . . . 1

]T
. (3.22)

Here, n is the total number of points in all target poses. Since the matrix X and vector I are

all known, we can solve the unknown vector m using least-square calculation:

m =
(
XTX

)−1
XT I. (3.23)

The result of our m vector calibration is

m =

[
−0.048 −0.504 1.958 −67.416 −81.450 −3899.411 −1014.962

]T
×10−6.

(3.24)

3.2.5 3D reconstruction

Once the vector m is solved, we obtain the parameters mij/m24, therefore, we can re-formulate

the 3D reconstruction as [
xw yw zw

]T
= A′

−1
b′, (3.25)
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where

A′ =


mc
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31 mc

12 − ucmc
32 mc

13 − ucmc
33

mc
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33
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24
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 , (3.26)

b′ =

[
ucmc

34 −mc
14 ucmc

34 −mc
24 vp

mp
34

mp
24
− 1

]T
. (3.27)

From Eq. (3.25) - Eq. (3.27), one can clearly see that the knowledge of the parameters in vector

m is already sufficient. In other words, the projector’s partial calibration as introduced above is

enough to serve the purpose of 3D reconstruction.

3.3 Experiments

We set up a structured light system as shown in Fig. 3.4 to test our algorithm. We used a digital

complementary-metal-oxide-semiconductor CMOS camera (the Imaging Source DFK 33UX174)

for image acquisition and a digital-light-processing (DLP) projector (Dell M115HD) for pattern

projection. The camera and projector pixel resolutions are set as 1280 × 1024 and 1280 × 800,

respectively. The camera is attached with a lens of 12 mm focal length (Computar M1214-MP2).

For algorithm validation, we first calibrated the system using both Zhang and Huang’s method

and our method. While Zhang and Huang’s method uses both horizontal and vertical patterns,

our method uses horizontal patterns only. For both methods, we used T = 12 pixels per period of

fringe patterns and N = 12 steps phase shifting for both calibration and 3D reconstruction.

In this research, we used a linear model for both the camera and the projector. To demonstrate

that the linear model is sufficient in describing our system, we first calibrated the system using

both our method and also Zhang and Huang’s method, and then take a look at their triangulation

error. The triangulation errors are estimated by first triangulating the target points back into world

coordinate (xw, yw, zw). The overlay of the triangulated points (xw, yw, zw) and the estimated ideal

target points (xwtg, ywtg, zwtg) (explained in Eq. (3.9) and Fig. 3.2(c)) are shown in Fig. 3.5(a) -



33

Figure 3.4 A snapshot of the test system.

3.5(b). We then compute the difference as:

xerr(u, v) = xwtg(u, v)− xw(u, v), (3.28)

yerr(u, v) = ywtg(u, v)− yw(u, v), (3.29)

zerr(u, v) = zwtg(u, v)− zw(u, v). (3.30)

The triangulation errors of both our method and also Zhang and Huang’s method are shown in

Fig. 3.5(c) - 3.5(d). The root-mean-square (RMS) errors for X, Y and Z are 0.06 mm, 0.06 mm

and 0.19 mm for our method; and 0.06 mm, 0.05 mm and 0.18 mm for Zhang and Huang’s method.

As one may see, our method produces the same level of triangulation error compared to Zhang and
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Huang’s method. Consider the overall depth volume of calibration [i.e. 200 mm (X) × 150 mm (Y )

× 120 mm (Z)], the triangulation error is less than 0.1%. Overall, the Z error is larger than X and

Y because of the varying focus convergence across the depth volume. Other possible error sources

include the estimation of circle centers and the planarity level of the calibration target.

Table 3.1 Measurement results of a sphere after repeated testing
Proposed method Zhang and Huang’s method

Test No. Mean error Std error Test No. Mean error Std error

(mm) (mm) (mm) (mm)

1 0.18 0.11 1 0.46 0.13

2 0.10 0.13 2 0.33 0.14

3 0.15 0.15 3 0.38 0.16

4 0.32 0.12 4 0.56 0.14

5 0.16 0.10 5 0.04 0.10

6 0.26 0.13 6 0.44 0.15

7 0.02 0.13 7 0.23 0.13

8 0.23 0.11 8 0.03 0.10

9 0.29 0.13 9 0.47 0.14

10 0.29 0.12 10 0.45 0.13

We measured a big white plastic spherical object to test the accuracy of our algorithm. We

first measured the diameter of the sphere using a 5 - 6 inch range precision mechanical outside

micrometer (Model: Starrett 436.1). The measured diameter is 5.816 ± 0.001 in, or equivalently,

147.726 ± 0.003 mm. To show that our calibration method indeed reconstructs absolute 3D geom-

etry, we measured the sphere using both our proposed calibration method and also the Zhang and

Huang’s calibration method. To evaluate the accuracy of both calibration methods, we compared

the reconstructed 3D geometries with an ideal sphere of the same size (i.e. d = 147.726 mm).

Figure 3.6(a) and 3.6(d) respectively demonstrate the overlay of the reconstructed 3D geometries

with an ideal sphere with a 147.726 mm diameter. The corresponding error maps are shown in

Fig. 3.6(b) and 3.6(e). To better visualize the error maps, we selected the same cross section

corresponding to the peak point and plotted them in Fig. 3.6(c) and 3.6(f). The mean error and

standard deviation are 0.10 mm and 0.13 mm for our method; and 0.33 mm and 0.14 mm for

Zhang and Huang’s method. To test the measurement stability, we measured the sphere 10 times
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at different spatial locations and the results are listed in Table 3.1. The results indicate that our

method produces the same level but with a slightly higher accuracy compared to the Zhang and

Huang’s method. We believe the major reason is because of the sensitivity bias in a well-designed

system. Figure 3.7 demonstrates this phenomenon of sensitivity bias. Figure 3.7(a) shows that

the pattern has the best sensitivity (i.e. apparent pattern distortion by object curvature) in one

(i.e. horizontal) pattern direction; yet Fig. 3.7(b) shows that there is almost zero sensitivity (i.e.

no distortion by object curvature) in the orthogonal (i.e. vertical) pattern direction. Our previous

finding Li and Zhang (2014) showed that under such a well-designed system, if both horizontal and

vertical patterns are used for calibration (same as Zhang and Huang’s method), the measurement

accuracy of a geometric shape with curvature could be jeopardized. Yet, our method only uses hor-

izontal patterns which has the highest sensitivity under such system setup. Therefore, the problem

associated with sensitivity bias can be circumvented. This experiment clearly demonstrates the

success of our method.

To further evaluate the accuracy, we take an additional set of 6 target poses within our cali-

bration volume and measured the lengths of two line segments AB and CD as shown in Fig. 3.8.

The line segments are formed by four circle centers and the lengths of the two line segments are

12×10
√

2 = 169.70 mm. Table 3.2 shows the measured lengths of the line segments using both our

method and Zhang and Huang’s method. The results show that our method can produce results

at the same error level compared to Zhang and Huang’s method. The mean and RMS errors are

0.26 mm and 0.34 mm for our method, and 0.24 mm and 0.31 mm for Zhang and Huang’s method.

The results further validate the success of our calibration method.

3.4 Summary

We developed a novel unidirectional calibration framework for structured light system. By re-

moving one DOF of redundancy in conventional structured light system calibration, our method

does not require the projection of fringe patterns in orthogonal directions, and thus could be po-

tentially applicable to unidirectional fringe projection systems. Experiments demonstrate that our
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Table 3.2 Measurement result of two diagonals on calibration board using proposed
method and Zhang and Huang’s method.

Proposed method

Pose No. AB (mm) Error (mm) CD (mm) Error (mm)

Pose 1 169.74 0.04 169.83 0.13

Pose 2 169.46 -0.24 169.82 0.12

Pose 3 169.72 0.02 169.74 0.04

Pose 4 169.44 -0.26 169.66 -0.04

Pose 5 169.76 0.06 170.58 0.88

Pose 6 169.89 0.19 170.13 0.43

Mean 169.67 -0.03 169.96 0.26

Std 0.18 NA 0.34 NA

Zhang and Huang’s method

Pose No. AB (mm) Error (mm) CD (mm) Error (mm)

Pose 1 169.63 -0.07 169.78 0.08

Pose 2 169.46 -0.24 169.85 0.15

Pose 3 169.61 -0.08 169.72 0.01

Pose 4 169.51 -0.18 169.75 0.05

Pose 5 169.64 -0.05 170.54 0.84

Pose 6 169.78 0.08 170.04 0.33

Mean 169.60 -0.10 169.94 0.24

Std 0.12 NA 0.31 NA

calibration method can achieve 3D shape measurement with an accuracy comparable to conven-

tional orthogonal calibration method within a measurement range of 200 mm (X) × 150 mm (Y )

× 120 mm (Z). Specifically, we achieved an average accuracy of 0.20 mm with a standard deviation

of 0.12 mm by repeatedly measuring a spherical object with d = 147.726 mm. The same technology

should be adaptable to any other pattern directions given that a simple rotation can be applied to

transform the image coordinate system Li and Zhang (2014).
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Figure 3.5 Evaluation of triangulation error. (a) Overlay of the triangulated points
(xw, yw, zw) and the estimated ideal target points (xwtg, ywtg, zwtg) using our
method; (b) overlay of the triangulated points (xw, yw, zw) and the estimated
ideal target points (xwtg, ywtg, zwtg) using Zhang and Huang’s method; (c) error
from our method, the RMS errors for X, Y and Z are 0.06 mm, 0.06 mm and
0.19 mm; (b) error from Zhang and Huang’s method, The RMS errors for X,
Y and Z are 0.06 mm, 0.05 mm and 0.18 mm.
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Figure 3.6 A sample evaluation of the measurement accuracies. (a) Overlay of the mea-
sured sphere using proposed method and the large ideal sphere with a 147.726
mm diameter; (b) error maps of (a) (mean error: 0.10 mm; standard deviations:
0.13 mm); (c) a cross section of (b); (d) - (f) corresponding results obtained us-
ing conventional Zhang and Huang’s method (mean error: 0.33 mm; standard
deviations: 0.14 mm).
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(a) (b)

Figure 3.7 Illustrations of sensitivity bias in a well-designed system. (a) A sample fringe
image with horizontal pattern projection (high sensitivity, apparent pattern
distortion by geometry); (b) a sample fringe image with vertical pattern pro-
jection (almost no sensitivity or pattern distortion by geometry).

A

BC

D

Figure 3.8 Illustration of measured two line segments AB and CD on our calibration
target.
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CHAPTER 4. SUMMARY AND FUTURE SCOPE OF WORK

This chapter summarizes the contributions of the research work and proposes some future scope

of work.

4.1 Research Achievements

In this research, we presented a new calibration technique for the structured light system with

the fringe pattern in only one direction. We theoretically proved that there is a degree of freedom

of redundancy in the conventional calibration method using orthogonal fringe patterns. Thus by

removing the redundancy in the conventional calibration method, it becomes possible to calibrate

the system using unidirectional patterns. Experiments were conducted with a spherical ball to

verify the effectiveness of the proposed calibration method. From the results, it has been evident

that our calibration method can achieve 3D shape measurement with an accuracy comparable to

conventional orthogonal calibration method within a measurement range of 200 mm × 150 mm ×

120 mm (X,Y and Z respectively). Specifically, we achieved an average accuracy of 0.20 mm with

a standard deviation of 0.12 mm by repeatedly measuring a spherical object. In this way, the time

involved for calibration can be reduced. This calibration approach can be applied to systems which

can produce patterns only in one direction.

4.2 Future Work

The proposed calibration method can be used for calibrating other systems. Following are some

of the potential applications:

• Flexible calibration for diffraction grating. As discussed in section 3.1, it is difficult to

calibrate diffraction grating (as shown in Fig. 4.1) using orthogonal patterns as the slits (as

illustrated in Fig. 4.2) used for splitting the incoming light can produce patterns only in one
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direction based on the opening in it. A flexible calibration system can be made for such

systems using unidirectional patterns.

Incident light 
from source

Fringe patterns

Figure 4.1 Schematic diagram of a diffraction grating

• Calibration of optical interferometers. Interferometers produce patterns when two coherent

light sources S1 and S2 (as depicted in Fig. 4.3) of the same frequency interfere with each other.

Like the diffraction gratings, optical interferometers cannot produce orthogonal patterns. A

calibration technique for interferometers using unidirectional patterns can be developed.
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Figure 4.2 Grating slit

Interference 
plane

S1

S2

Figure 4.3 Schematic of wavefront interference
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